Postsynaptic TRPC1 function contributes to BDNF-induced synaptic potentiation at the developing neuromuscular junction.

نویسندگان

  • Julie S McGurk
  • Sangwoo Shim
  • Ju Young Kim
  • Zhexing Wen
  • Hongjun Song
  • Guo-Li Ming
چکیده

Brain-derived neurotrophic factor (BDNF) induces synaptic potentiation at both neuromuscular junctions (NMJs) and synapses of the CNS through a Ca2+ -dependent pathway. The molecular mechanism underlying BDNF-induced synaptic potentiation, especially the regulation of Ca2+ dynamics, is not well understood. Using the Xenopus NMJ in culture as a model system, we show that pharmacological inhibition or morpholino-mediated knockdown of Xenopus TRPC1 (XTRPC1) significantly attenuated the BDNF-induced potentiation of the frequency of spontaneous synaptic responses at the NMJ. Functionally, XTRPC1 was required specifically in postsynaptic myocytes for BDNF-induced Ca2+ elevation and full synaptic potentiation at the NMJ, suggesting a previously underappreciated postsynaptic function of Ca2+ signaling in neurotrophin-induced synaptic plasticity, in addition to its well established role at presynaptic sites. Mechanistically, blockade of the p75 neurotrophin receptor abolished BDNF-induced postsynaptic Ca2+ elevation and restricted BDNF-induced synaptic potentiation, while knockdown of the TrkB receptor in postsynaptic myocytes had no effect. Our study suggests that BDNF-induced synaptic potentiation involves coordinated presynaptic and postsynaptic responses and identifies TRPC1 as a molecular mediator for postsynaptic Ca2+ elevation required for BDNF-induced synaptic plasticity.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Pro-BDNF–induced synaptic depression and retraction at developing neuromuscular synapses

Postsynaptic cells generate positive and negative signals that retrogradely modulate presynaptic function. At developing neuromuscular synapses, prolonged stimulation of muscle cells induces sustained synaptic depression. We provide evidence that pro-brain-derived neurotrophic factor (BDNF) is a negative retrograde signal that can be converted into a positive signal by metalloproteases at the s...

متن کامل

Muscle Contraction Regulates BDNF/TrkB Signaling to Modulate Synaptic Function through Presynaptic cPKCα and cPKCβI

The neurotrophin brain-derived neurotrophic factor (BDNF) acts via tropomyosin-related kinase B receptor (TrkB) to regulate synapse maintenance and function in the neuromuscular system. The potentiation of acetylcholine (ACh) release by BDNF requires TrkB phosphorylation and Protein Kinase C (PKC) activation. BDNF is secreted in an activity-dependent manner but it is not known if pre- and/or po...

متن کامل

/Calmodulin-dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3

Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve–muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), w...

متن کامل

Intracellular Ca2+ and Ca2+/Calmodulin-Dependent Kinase II Mediate Acute Potentiation of Neurotransmitter Release by Neurotrophin-3

Neurotrophins have been shown to acutely modulate synaptic transmission in a variety of systems, but the underlying signaling mechanisms remain unclear. Here we provide evidence for an unusual mechanism that mediates synaptic potentiation at the neuromuscular junction (NMJ) induced by neurotrophin-3 (NT3), using Xenopus nerve-muscle co-culture. Unlike brain-derived neurotrophic factor (BDNF), w...

متن کامل

Doxepin improves stress-impaired long-term potentiation and gene expression of BDNF in the rat hippocampus

Introduction: Stress is associated with neurological and cognitive disorders. It has been suggested that doxepin, in addition to its influence on the content of neurotransmitters, has probable neuroprotective effects as well. Therefore, the aim of this study was to investigate the effects of doxepin on synaptic plasticity and brain-derived neurotrophic factor (BDNF) gene expression in the rat h...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of neuroscience : the official journal of the Society for Neuroscience

دوره 31 41  شماره 

صفحات  -

تاریخ انتشار 2011